f=5X^2-10+X

Simple and best practice solution for f=5X^2-10+X equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for f=5X^2-10+X equation:



f=5f^2-10+f
We move all terms to the left:
f-(5f^2-10+f)=0
We get rid of parentheses
-5f^2+f-f+10=0
We add all the numbers together, and all the variables
-5f^2+10=0
a = -5; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-5)·10
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*-5}=\frac{0-10\sqrt{2}}{-10} =-\frac{10\sqrt{2}}{-10} =-\frac{\sqrt{2}}{-1} $
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*-5}=\frac{0+10\sqrt{2}}{-10} =\frac{10\sqrt{2}}{-10} =\frac{\sqrt{2}}{-1} $

See similar equations:

| 12y+6=3 | | 6r-3=7r-8 | | 2^3t*4^t-1=16 | | 2x2+15x-12x-90=0 | | 12^2-13x-69=0 | | 2c+8|=|10c | | 1-2m-5m2=0 | | 17/11=v/13 | | 4k/9=18 | | Z2+3z+4=0 | | 3x2–54x+51=0 | | 3-6y=9 | | x(0.1)+6000(.03)=(x+6000)(0.07) | | 10p+10=10 | | x(0.05)+4x(0.07)=3300 | | 3r+36/12=2r-12/2 | | w÷5+6=16 | | A^2-13a-10=0 | | 6x+78-72-18x=6 | | -5-4x=-15 | | 17.50x+189+289=1261.50 | | 20x+15=7x+41 | | 63-7x=6x-2 | | y-2y+3=0 | | 2x+x+4(2x+x)=315 | | x+17=4/9*x | | 3x-3=5+4x | | -3x-18=4(x+6) | | |4x-|=5x+8 | | 21-4x=12x-(x-7)+6(2-3x) | | 5z+3=100 | | 5w+w=180 |

Equations solver categories